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AbstractmSince the classical work of Cloos, deformed distributions of elliptical objects such as ooids or pebbles 
have been recognized as an extremely important category of geological strain marker. However, elliptical objects 
are not easily analyzed, especially where primary sedimentary fabrics are tectonically imbricated. This paper 
demonstrates that previously published analytical techniques generally address only specific aspects of deformed 
ellipse distributions; as research tools, they are like a stereonet with great circles only or small circles only. All of 
the above methods can be combined with the aid of a new orientation net which is as convenient to use in the field 
as a standard stereonet. Uniform and imbricate fabrics are evaluated with equal ease and assumptions are 
subjected to statistical testing. 

INTRODUCTION 

STRAta data are critical for the proper balancing of 
cross-sections and may be vital to the correct interpreta- 
tion of regional tectonic regimes, yet strain analyses are 
seldom incorporated in regional structural studies, prob- 
ably owing to: (i) the difficulty of applying strain theory 
to real rocks; (ii) the general paucity of 'classical' strain 
markers such as trilobites; and (iii) a hesitancy on the 
part of the field geologist to undertake complex calcula- 
tions of dubious validity. 

Ellipsoidal objects (ooids, pebbles, reduction spots, 
varioles, lapilli, xenoliths, etc.) are one of the most 
important categories of geological strain marker. 
Because beds or layers containing populations of ellip- 
soids are commonplace (e.g. Cloos 1947, Hossack 1968), 
statistically viable data sets can be collected and sec- 
tioned in three mutually perpendicular directions, or 
elliptical outlines can be traced off non-orthogonal joint 
surfaces; in either case, combinations of two "dimen- 
sional measurements may be used to yield three-dimen- 
sional strain estimates (Ramsay 1967, Oerte11970, 1978, 
Roberts & Siddans 1971, Milton 1980, Gendzill & Stauf- 
fer 1981, Owens 1984, De Paor 1986 and work in prep- 
aration), from which one may determine the two most 
important deformation parameters, the strain intensity 
E and the strain ellipsoid symmetry class k (Flinn 1962, 
see also Hsu 1966). Distributions of ellipsoidal objects in 
layered stratigraphy record strain variations in space and 
time (Cloos 1947); maps of such variations are much 
more useful than individual numerical values. Usually, 
only the irrotational component of deformation is 
measurable at any point in space, but the requirement of 
compatibility among neighboring locations imposes con- 
straints on the relative rotations and translations that 
may accompany stretch in heterogeneous deformation 
fields (e.g. Cobbold 1980, Schultz-Ela 1986). 

However, whereas the behavior of longitudinal and 
angular strain markers is relatively simple, equations for 
ellipse deformation are multivariate and complex. 

Numerous graphical solutions have been proposed, 
including the 'Rf/~' method of Ramsay (1967, see Gay 
1968, Dunnet 1969, Dunnet & Siddans 1971, Lisle 1977a, 
1985), the 'shape factor grid' of Elliott (1970), the 
'center-to-center' method of Fry (1979, see Hanna & Fry 
1979, Erslev 1987, 1988), and the projection method of 
Panozzo (1983). A range of algebraic solutions also 
exists (Oertel 1970, 1978, Matthews et al. 1974, 
Shimamoto & Ikeda 1976, Lisle 1977b, 1979, Robin 
1977, Hutton 1979, Pfiffner 1980) (see Appendix) but 
some cannot deal with primary fabrics and those that do 
involve unacceptable elements of uncertainty. Practical 
field geologists are particularly reluctant to become 
embroiled in technical arguments regarding the relative 
rrierits of alternate procedures (e.g. De Paor 1980, 
1981a, Siddans 1981, Wheeler 1986). There is a need for 
amalgamation of published methods incorporating the 
capability to handle tectonically imbricated fabrics. The 
solution described here employs a hyperbolic net (De 
Paor 1981b) that is as easy to use as a standard stereonet 
and that yields valid results from initially uniform and 
imbricated fabrics. The net allows simultaneous 
implementation of many of the methods listed above. It 
solves the practical problems associated with field 
implementation of theoretical concepts and leaves the 
geologist free to concentrate on tectonic implications of 
the quantitative results. 

NOTATION 

To describe the shape of an elliptical object indeper/- 
dent of its size, one may use either the axial ratio R or the 
shape factor e, where 

e = (In R)/2 (1) 

(see Nadai 1950, Elliott 1970). Long and short axes may 
be taken in any order, so that 0 < R < o o  and 
- ~  < e < ~.  Axial orientations are specified by the 
angle q), here measured positive clockwise from the zero 
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direction N, which may represent either geographical 
North or an arbitrary reference direction. The initial, 
strain and final states are distinguished by subscripts i. s 
and f, respectively. This is consistent qcith Elliott (1970); 
other  authors have denoted initial angles by 0. without 
subscript. 

Axial ratios increase multiplicatively under parallel 
homogeneous strain (Ramsay 1967); for all q~ = 0. 

R f  = Rs x R i. (2) 

In contrast, shape factors increase additively, 

e l =  es + ei (3) 

(Nadai 1950, Elliott 1970). Axial ratios are the simplest 
measures of ellipticity, but shape factors are convenient 
for certain purposes such as sequential straining and 
unstraining. 

Equations (2) and (3) apply only to ellipses with axes 
parallel to the principal strain directions. In general, 
~ ,  ~O~ and q~r differ from zero and from each other,  and 
deformation of an elliptical object is then described by 
polar co-ordinate pairs which undergo transformations 
of the form 

(Rf, q~f) = function {(R~, ~ ) ,  (Ri, qbi) } (4) 

(el, q~f) = function {(e~, q~), (el, q~i)}. (5) 

The actual functional relationships are somewhat com- 
plex and are treated in the Appendix.  It is intuitively 
obvious, however,  that the final shape and orientation of 
an ellipse are independent  of its initial size and position" 
they depend only on initial shape and orientation, along 
with the shape and orientation of the strain ellipse. 

THE HYPERBOLIC NET 

The hyperbolic net of De Paor (1981b) comprises two 
intersecting families of curves (Fig. 1). One family has 
vertical and horizontal asymptotes and vertices that lie 
along the diagonals. These track the progressive changes 
of shape and orientation of ellipses during deformation 
and therefore they are called ellipse trajectories. The 
second set has symmetric non-orthogonal asymptotes 
and the vertices lie along the horizontal or vertical axes. 
These mark equal increments of strain along the trajec- 
tories and are called strain contours. The two families of 
curves have appeared under various names in a number 
of previous publications (Gay 1968. Dunnet  1969. Elliott 
1970, Dunnet  & Siddans 1971, Lisle 1977a. 1985. Robin 
1977, Le Theoff  1979, Wheeler  1984). The difference in 
Fig. 1 lies in the simple polar co-ordinate plotting scheme 
employed. Polar co-ordinates are the natural choice as 
they facilitate operations resembling stereonet proce- 
dures. 

There are two diametrically opposite direction's q~ and 
q~ + 180 ° each of which equally represents an ellipse's 
orientation, just as there are two points on the perimeter  
of a stereonet representing a plane's strike or a line's 
trend. This fact affords one the opportunity to treat 

ellipticity using axial ratios on one side of the net t the 
'R-side') and shape factors on the other side (the e-  
side'). To this end. on the R-side (Fig. 1 top half), ellipse 
trajectories and strain contours are spaced in regular 
increments ofAR = 0.2 (light lines) and AR = 1.0 (bold 
lines) from R = 1 at the center of the net up to R = 5. 
To avoid clutter, only AR = 1.0 increments are dis- 
played for R > 5. On the e-side (Fig. 1, bottom half). 
shape factors commence with 0 at the center of the net. 
Increments of Ae = 0. i  (bold lines) and of Ae = 0.05 
(light lines) are marked and are seen to be equally 
spaced along the axis from the center to the periphery. 
Diametrically opposite points on the net represent corre- 
sponding (R, $) and (e, ~) co-ordinate pairs, so the 
transformation in equation (1) may be performed 
graphically by a 180 ° rotation of a tracing overlay on the 
net. Note that the net has been arbitrarily terminated at 
a radius representing axial ratios of R = 15. It would 
have been possible to continue to higher ratios, but the 
behavior of an ellipse with R > 15 differs little from that 
of a line. so all higher ratios are truncated to R = 15. 
(This procedure is further justified in practice because it 
is difficult to avoid measurement  errors for such high 
ratios: sometimes one cannot decide whether a single 
extremely long individual has necked and split in two, ) 
A net of arbitrary range may be generated using a 
Macintosh computer  program available from the author. 

PLOTTING PROCEDURE 

To plot a point representing an ellipse of axial ratio Rf 
and orientation ~pf (positive clockwise of an arbitrary 
zero direction N), place a tracing overlay on the net, 
secure with a central thumb tack. and label the direction 
N. Rotate  the net's R-axis to an angle q~ positive 
clockwise of N (or, equivalently, rotate the overlay in 
the opposite direction) (Fig. 2). This is identical to the 
plotting procedure for the trend of a line on a standard 
stereonet and is facilitated by 1 ° (light line) and 10 ° (bold 
line) scales in the peripheral ring. Mark a point at 
distance Rf from the center along the R-axis. Rotate  the 
overlay 180 ° and plot the point (Rf,  cpf *_ 180°). The e~ 
value corresponding to Rf may now be read off the 
e-axis. (This step is not needed immediately, but it is 
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Fig. 2. Plotting procedure for representing an ellipse of orientation q~f 
and axial ratio Rt or shape factor ef  N is an arbitrary reference 

direction. See text for explanation.  
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useful practice for later; also, by plotting two points per 
datum, one avoids the mistake of placing part of the 
distribution on one side of the net and part on the other, 
if field records of q~f range over 360 °.) 

STRAIN CALCULATION 

Having plotted a complete set of deformed ellipse 
data, the next step is to estimate the strain recorded by 
the distribution assuming homogeneous deformation 
and no primary sedimentary fabric. To do this one 
simply rotates the net under the tracing overlay until the 
R-axis divides the population of points on the R-side of 
the net in half (Fig. 3a). This locates the maximum 
principal stretch axis orientation, q)~. Previously pub- 
lished techniques use the vector mean ellipse orientation 
~f as an estimate of Cs. However, if the assumption of no 
primary fabric is valid, then the mean, mode and median 
of the deformed distribution coincide and the median is 
the easiest to locate. If there is no gap between orienta- 
tions of ellipses plotted on the R-side and the e-side of 
the net, then no unique median line will be located; this 
normally implies that the distribution is undeformed. 

Without moving the R-axis from its median position, 
find the strain contour that also divides the population in 
half (Fig. 3b). It intersects the R-axis at a distance Rs 
from the origin. By comparison with Dunnet (1969), it is 
clear that the strain contours represent 50%-of-data 
curves for successive increments of strain. The above 
procedure rapidly identifies the particular 50%-of-data 
curve that fits the deformation state under considera- 
tion. 

EVALUATION OF RESULTS 

The validity of the (R~, ~s) value obtained above is 
dependent on the assumptions that the ellipses deformed 
homogeneously with each other and with their matrix, 
and that they did not possess a primary sedimentary 
fabric. Before proceeding to apply two tests of these 
assumptions, isogons must be constructed for use in the 
validation procedure. 

N ¢s 

Fig. 3. Strain calculation. (a) After plotting all Rf/•f data, rotate the 
net until the R-axis divides the data in half. (b) With the R-axis fixed, 
find the strain contour which also divides the data in half. Its vertex is 

at (Rs, q),). 

Isogon construction 

Isogons, lines joining points of equal angle, were 
invented independently by Agterberg (1961) and Elliott 
(1965) and were applied to dip variations in folds by 
Ramsay (1967). Here, they are used to identify loci of 
ellipses with various shapes but identical initial orienta- 
tion. Such loci were labelled '0-curves' by Lisle 
(1977a, b). Because isogons play a central role in the 
analysis of deformed ellipse distributions, a locus will be 
generated from first principles, then a rapid construction 
will be presented. 

For simplicity of notation, but without loss of general- 
ity, assume that the arbitrary reference line N is the 
principal stretch axis as determined in the strain calcula- 
tion section above (i.e. q)s = 0). To construct an isogon 
for the initial orientation q)i, mark N on a tracing overlay, 
align it with the net axis, and draw a radius across the 
e-side of the net at any chosen angle q~ to the principal 
direction (Fig. 4a). Move every point an equal distance 
es along the strain trajectories. Then repeat the proce- 
dure for a line perpendicular to the first. The outcome is 
a hyperbola-shaped curve (Fig. 4b). Call the axial inter- 
section point (Rs, 0) and the curve's vertex (Rm, q)m)- 
Strictly, the net's axis divides the curve into separate 
isogons for the initial angles q)i and q)i + 90 °. However, 
in this paper, R is not restricted to ratios greater than 
unity, so an ellipse (R, q~) is equivalent to (1/ 
R,  ¢ __ 90°). 

To examine the form of the isogons further, rotate the 
net until the isogon vertex m lies along the net axis (if ¢~ 
happens to be 45 ° no rotation is required) and note that 
the ~-isogon for a strain of (Rs, 0) is identical to the 
strain contour ('50%-of-data curve') passing through 
( R m ,  ~bm) (Fig. 4c). Expressed another way, each strain 
contour represents a set of isogons, one for each possible 
strain ellipse that plots somewhere on it (Fig. 4d). For 
the strain ellipse that plots at the vertex, it is the 45 ° 
isogon (c.f. Lisle 1977a). It follows that isogons for 
arbitrary values of q)~ can be constructed simply by 
rotating the net until a suitable strain contour passes 
obliquely through (Rs, q~s). The procedure is analogous 
to the construction of an inclined stereonet by rotating 
an equatorial net until each great circle in turn passes 
through the inclined axis. For a given value of (R~, q)~), 
the q~ value represented by an isogon is determined by 
rotating the R-axis into the ¢~ direction and tracing the 
isogon to its asymptote (0o, q~i), or (15, qh) in practice. 
Because an infinitely elliptical ellipse is analogous to a 
line, q)i is determined by Sorby's equation, 

tan ¢i = Rs tan q~f. (6) 

Sometimes instead of finding ~i for a given isogon, it is 
necessary to draw the isogon for a given value of ~0i. To 
do this, one first determines q~f from equation (6), and 
marks a point (~ ,  q)f) on the periphery of the net. Then 
by rotating the net until a strain contour asymptotic to 
(o0, q~f) passes through R~, the desired curve may be 
traced. This procedure is analogous to fitting a great 
circle through an inclined axis at a particular strike angle. 
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Fig. 4. Derivat ion of isogons from first principles. (a) A pair of perpendicular  radii are drawn on the net. (b) All points on 
the e-side are displaced along ellipse trajectories through a certain number  of strain contour  increments.  (c) Net is rotated 
until  the isogon is symmetric about  the R-axis. Note that  it lies along a strain contour.  (d) A single strain contour  is 

interpreted as an  isogon of different ¢i value for each strain (R~I, 0~1), (Rs2, ¢~2), (R,3, ¢,3),etc. ,  that plots along its length. 

First test: (Rs, q~) scatter diagram 

To test the assumption of strain homogeneity note 
that, ideally, every isogon that divides the population in 
half should pass through (Rs, ~s). Therefore. construct 
isogons by rotating the net into an arbitrary orientation 
and finding the strain contour that divides the population 
in half (Fig. 5). Mark the point of intersection with each 
previously drawn isogon (points of glancing intersection 
may be omitted at the user's discretion as they may vary 
within the thickness of a pencil). Every isogon-isogon 
intersection is an (R,, ~ )  estimate and the tightness of 
the cluster of estimates is a measure of the validity of 
the initial result, which may be thought of as represent- 
ing the special case of the 0 ° and 45 ° isogon intersection. 
This procedure is analogous to the construction of a 
't-diagram' of great circle intersections on the stereonet 
(Ramsay 1967. p. 12). If data fail this test, the strain 
estimate is invalidated. 

Second test: primary fabric test 

Following Lisle (1977a, b) and Robin (t977), a quan- 
titative measure of the initial orientation distribution is 
now applied to data passing the test of homogeneity in 
order to detect any initial sedimentary fabric (Fig. 6). 

/ 

Fig. 5. R~/q>~ scatter diagram to test the assumption of strain 
homogeneity.  With the net axis rotated to an arbitrary orientat ion,  the 
strain contour  that divides the population in half is traced. After  
several repetitions of the construction, points of intersection of all 
traced lines are marked,  forming a cluster of strain estimates. The 
tightness of the cluster is an indication of the validity of the strain 

estimate. 

On a new overlay, the centroid of the (R~, ¢~) scatter is 
chosen as the best strain estimate, then a set of regularly 
spaced isogons (say 100 or 22.5 ° apart) are constructed 
with the aid of Sorby's formula, equation (6) above. This 
time, all isogons are required to pass through (Rs, q~s) 
even if they do not divide the population in half. The 
sectors between each pair of adjacent isogons are 
expected to contain equal subdivisions of the population 
for a perfectly uniform initial distribution. Observed 
sub-populations are compared with those expected using 
standard Z 2 statistics. Failure of the test may be due to 
different causes (see Discussion), but primary fabrics 
are recognized by point concentrations strung out along 
a specific isogon that was initially parallel or imbricated 
to bedding (the 'banana' shapes of Elliott 1970 and the 
'retort' shapes of Lisle 1985). 

Third test: initial shape test 

Isogons are loci of equal initial orientation. The equi- 
valent loci of initial shape are termed initial shape 
contours and are constructed from first principles as 
follows. First, draw a central circle of arbitrary radius on 
an overlay (Fig. 7a). Move every point on the'e-side in 
equal increments Ae along the ellipse trajectories until 
any desired strain es has been imposed (note that points 
perpendicular to the e-axis are displaced inward. 
through the center, then out along the axis. representing 

,q 

t / 
lii " "  11) 

~,\ /// 

Fig. 6. Test for a primary fabric, after Lisle (t977) and Robin (1977). 
Isogons representing ~, = 0, 22.5, 45 and 66.5 ° are constructed 
through (R~, ¢~) as explained in the text. The numbers  of points 
observed between adjacent  isogons are counted and compared with 

the expected division into equal sub-populations.  
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Fig. 7. Construction of initial shape contours from first principles. (a) A central circle is drawn on an overlay. On the e-side 
of the net, each point on its perimeter is moved along the ellipse trajectories through an equal number of increments es. (b) 
Repetition of this construction after 180 ° rotation of the overlay. (c) Same construction as (b), but for the case ~s > el. (d) 
Rapid construction of nested initial shape contours: upon sequential arbitrary rotations of the net, e~ increments are set off 

along the strain contour that passes through (e,, 0). 

the behavior of ellipses which contract along their long 
axis, pass through the circular state, then flip axes). 
Optionally, rotate the net 180" and repeat (Fig. 7b). The 
procedure is analogous to the construction of an inclined 
small circle on an equatorial stereonet by rotation of a 
vertical small circle. On the hyperbolic net, however, 
the outcome is a guitar-shaped curve for Rs < R~, chang- 
ing to a pair of onion-shaped loops when Rs > Ri (Fig. 
7c). Varying Ri generates a nested set of initial shape 
contours converging on (Rs, ~ ) .  A critical observation 
may now be made on the e-side of the net. By rotating 
the net axis until an arbitrary isogon passes through 
(e~, ~ )  one may demonstrate that equal increments ei 
are subtended by the isogon's two intersections with 
each ei-contour (the initial shape contour is analogous to 
a cone of 'centre' e~ and 'semi-apical angle' ei on a 
standard stereonet). Consequently, a set of initial shape 
contours may be rapidly constructed as follows: set off 
any.number of Ae~ increments along the e-axis, to either 
side of es (Fig. 7d; the value of AE i may be chosen by 
converting a desired interval ARi). Then rotate the net a 
little and set off the same increments along the isogon 
that passes through (es, 0). Repeat until a nested set of 
initial shape contours has been generated. This proce- 
dure is analogous to the construction of nested cones on 
a standard stere0net by setting off the semi-apical angles 

as a pitch along every g'ceat circle that passes through the 
axis. In all of the above analogies, isogons are equivalent 
to great circles, initial shape contours to small circles. 

By constructing initial shape contours as described 
above, it is possible to test the uniformity of Ri values as 
initially proposed by Dunnet (1969). If initial axial ratios 
were close to a mean value Ri, or always less than a 
cut-off value Ri-max, then the distribution of (Rf, Of) 
data should cluster around, or inside, the corresponding 
Ri-contour. In practice, it is found that points rarely 
behave as predicted. Rf/q~f plots often show no relation 
between data and superimposed contours, implying a 
random rather than Gaussian distribution of Ri. Ri-con- 
touring is a useful way to obtain initial shape information 
which may be relevant to sedimentological studies, with- 
out actually moving all data along strain trajectories, but 
the test is of little practical use in evaluating a strain 
estimate. 

PRIMARY FABRICS 

If a distribution is not initially uniform, but instead 
shows a preferred alignment of long axes (e.g. Dunnet & 
Siddans 1971, Boulter 1976, Hoist 1982), its deformed 
equivalent fails the Z 2 test and the (Rs, ~s) estimate 
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Fig. 8. Strain analysis of a distribution with a primary fabric. (a) Rf/(pf 
data and final bedding trace q~bf are plotted and the median isogon 
asymptotic to ~be is found. (b) A line drawn in the ~ direction 

intersects the median isogon in R~. 

obtained above must be abandoned.  The following alter- 
native procedure works if the distribution was initially 
symmetric about a mean direction such as the trace of 
bedding (Fig. 8). Beginning with the original overlay 
containing all (Rf, qh) data plotted relative to an arbit- 
rary reference direction N, add the point (~ ,  q~bf), 
where q~bf is the orientation of bedding after deforma- 
tion. Rotate  the net until each strain contour  in turn 
becomes asymptotic to @bf and examine how it divides 
the distribution. By successive over- and underesti- 
mates, find the isogon that divides the distribution in 
half. This is the median isogon (thus far, the procedure 
is analogous to finding a best fit great circle of  designated 
strike q~bf). Any point on the median isogon may repre- 
sent (R~, q~s). Given an independent  estimate of the q)~ 
direction from a mineral elongation or foliation trace 
(both approximations at best), R~ may be found at the 
intersection of the median isogon with the q~s direction. 
Failing that, the range of reasonable (Rs, q~s) values may 
be bounded by considering the acceptability of Ri values 
that result from a choice of Rs. Even if one is unable to 
estimate the range of acceptable R~ values from a know- 
ledge of the undeformed sediment, the state of preserva- 
tion of pebbles limits the possibilities for R~. At the very 
least, the median isogon yields a minimum R~ at its 
vertex and a range of @~ bounded by the asymptotes. 

If an initial line of symmetry q~bf is not visible, or if the 
primary fabric was imbricated oblique to bedding, a 
median isogon may nevertheless be fitted by trial and 
error.  If all else fails, it is still possible to unstrain data 
iteratively using the trajectories on the e-side of the net. 
and assuming various values of q~ in turn. The iteration 
is continued until the majority of e~ values go through 
minima at the vertices of their ellipse trajectories and 
begin to increase axial ratio again. 

EFFECTS OF VISCOSITY CONTRAST AND 
NON-COAXIAL DEFORMATION 

Lisle (1985) presented a set of lsogons for analysis of 
objects whose viscosity is greater than that of their host 

rock. Similar isogon sets could be constructed on the 
hyperbolic net, but this procedure is not recommended,  
as it is based on the unreasonable assumptions that, in 
three dimensions, one axis of each object 's triaxial ellip- 
soid is perpendicular to the plane of inspection, and that 
the plane of inspection is always a principal plane. If 
these assumptions are dropped,  then the material sec- 
tions of ellipsoidal objects seen in any slice through the 
rock will not be the same throughout  deformation (De 
Paor 1981a,b). The shapes of final elliptical sections will 
depend on the lengths and orientations of all ellipsoid 
axes, all strain axes and the viscosity contrast. Freeman 
(1985) discovered the important  fact that rigid eIlipsoids 
develop a prolate fabric even when deformed in plane 
strain, but the effect of strain on relatively different 
viscous objects, as seen in sectional fabrics, has not yet 
been calculated. 

It is now generally accepted that fabric symmetry of 
deformed ellipses is independent  of strain path when 
there is no viscosity contrast between objects and their 
matrix (Le Theoff  1979. De Paor 1980.1981a,b. Wheeler 
1984, Lisle 1985). An abstract by Cobbold & Gapais 
(1983) referred to in Choukroune et aL (1987, fig. 2h) 
suggests that asymmetric nested R~-contours result from 
non-coaxial strain of objects that are more viscous than 
their matrix, although the effect is barely detectable 
(<10 ° offset even for strains as high as R~ = 20 and 
viscosity contrasts of V = 10). Until more data are 
available it is not possible to tell whether  this conclusion 
is based on the dubious assumption that all ellipsoids 
have one axis perpendicular to the principal plane of 
inspection. 

DISCUSSION AND CONCLUSIONS 

The analysis of deformed ellipse distributions need 
not be any more difficult than the manipulation of 
orientation data on a stereonet.  Initial shape contours 
are analogous to small circles, isogons to great circles. 
Before deformation,  these form concentric circles and 
radiating straight lines, respectively, just as on a polar 
stereonet.  The effect of deformation is analogous to the 
rotation of such a net from a polar to an inclined 
projection. Therefore  the fitting of 'onion curves" (Dun- 
net 1969) is analogous to using an inclined stereonet with 
small circles but no great circles, while the "0-curve 
technique of Lisle (1977a) represents the opposite, a net 
of great circles without small ones. Because different 
criteria are used to fit 'small' and "great' circles, compari- 
sons of results show considerable variation (Hanna & 
Frv 1979. Seymour & Boulter  1979. Paterson 1983. 
Borradaile 1984. Babaie 1986). Robin's  (1977) and 
Lisle's (1985) approach is a significant advance in that 
the analogies of great and small circles are used together.  
but the nets are Cartesian. not polar. The hyperbolic net 
presented here incorporates all of the plots cited above 
on its R-side. along with the classical shape factor grid of 
Elliott ~ 1970. see also Tobisch et al. 1977. Wheeler 19841 
on the ~-side. Elliott's method has proven less popular 
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than Dunnet's (but see Hoist 1982), probably because of 
its double polar angle convention and its reliance on a 
more obscure mathematical derivation based on hyper- 
bolic sines and cosines of natural logarithms, and 
because of the availability of computer programs for 
Rf/¢ analysis by Dunnet & Siddans (1971) and Peach & 
Lisle (1979). On the hyperbolic net, conversion from 
axial ratios to shape factors and vice versa is performed 
by a simple 180 ° rotation of the overlay. 

As an alternative to graphical methods, there exist a 
set of mathematical techniques involving averages of 
ellipse or ellipsoid shapes (Oertel 1970, 1978, Matthews 
et al. 1974, Shimamoto & Ikeda 1976, Lisle 1977b, 
Robin 1977, Miller & Oertel 1979, Pfiffner 1980, Bell 
1981, Wheeler 1986, 1987). Techniques that take 
account of axial ratios only may give a valid approximate 
strain ratio when fluctuations in orientation are 
extremely low (Hutton 1979). Of those that take account 
of ellipse orientations in addition to axial ratios, Robin's 
method is by far the easiest to use in the field in this 
author's experience. Some mathematical methods yield 
rapid results but are unable to detect or deal with 
primary sedimentary fabrics. Others are theoretically 
suspect; for example~ Wheeler (1986) has shown that 
Shimamoto & Ikeda's (1976) method is unstable, and 
the complex analysis presented in Wheeler (1987) is 
based on the invalid assumption that primary sedimen- 
tary fabrics can be modelled by applying a 'virtual' strain 
to a random fabric. Finally, it must be emphasized that 
Robin's (1977), Fry's (1979), Panozzo's (1983) and 
Erslev's (1988) methods are the only ones that 
adequately deal with non-elliptical initial shapes, or with 
shapes that become non-elliptical during strain by pres- 
sure solution (Mosher 1980, 1981, Onasch 1984). 
Markers may more closely approximate sub-ellipses or 
super-ellipses (Fig. 9), given by 

x " + y " =  1, (7) 

where n > 2 or n < 2, respectively (these shapes 
approximate towards diamonds and television screen 
shapes; c.f. Lisle 1981). During strain, their axes rotate, 
respectively, slower or faster than the equivalent ellipse 
axis (n = 2). It is clearly important, therefore, to assess 
the symmetry of a distribution about all isogons, not 
only those for ¢~ = 0 ° and 45 °. 

None of the techniques discussed in this paper can 
deal with objects possessing significantly greater viscos- 
ity than their matrix, because there is no simple way to 
describe the resultant heterogeneous strain field. There 
is no point in devising solutions that require the assump- 

I <n<2. 
\ 2 ~ < ~  

Fig. 9. Illustration of the shapes of sub-ellipses and super-ellipses, see 
equation (7). 

tion that all ellipsoids have an axis perpendicular to the 
plane of inspection. 

In conclusion, it would seem advisable that the practi- 
cal geologist should go to the field equipped to carry out 
(a) Fry analysis or (b) the Robin technique (197"7), on 
deformed objects which have undergone pressure solu- 
tion or which depart from an elliptical outline, and (c) 
hyperbolic net analysis of ellipse distributions which 
may have had a primary fabric. These three techniques 
cover most eventualities and results can later be trans- 
formed into traditional Cartesian Rf@ plots for the sake 
of familiarity. The stereonet methods described here are 
not difficult to master; with practice, they permit strain 
analysis of 50 ellipses per section in about 15 min. What 
matters in the end is not the calculation of Rs to the third 
decimal place, but rather whether the three-dimensional 
deformation state represents contractional, extensional 
or wrench movements in the crust, whether it departs 
significantly from plane strain, and whether it can be 
factored into tectonically meaningful components. To 
that end, a simple method of reconstructing the three- 
dimensional strain state from two-dimensional data will 
be presented in a forthcoming paper. 
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APPENDIX 

DERIVATION O F  E Q U A T I O N S  

To facilitate readers who may wish to check the validity of practical 
applications described in the mare paper, or to compare results of 
various methods, the equations governing deformed ellipse distribu- 
tions are derived here from first principles. If ellipses are represented 
in Mohr space, using the reciprocal quadratic stretch and reciprocal 
shear strain parameters (;~'~ y' ) of Nadai (1950), ~ e n  their transforma- 
tion under strain follows a simple straight line path. Ellipses of axial 
ratio R are represented by a common Mohr circle regardless of 
orientation, but a specific pole to the Mohr circle distinguishes an 
ellipse of particular orientation ~ from all other ellipses with the same 
axial ratio (Fig. A1), If (2~. Yl) are the pole co-ordinates for an initial 
ellipse, the corresponding final pole co-ordinates (2~, y~) resulting 
from imposition of tectonic strain (2;, 01 are given by Ramsay (1967. 
p. 93). 

;., = ~..' ,~; (A1) 
v', = 7 (A2) 

(see Fig. A2) These are the fundamental transformations of Rdcp~ 
strain analysis in the simplest possible format. 

The Mohr circle representing an ellipse of axial ratio R intersects the 
horizontal reference axis at (R, 0) and (l/R, 0}. Thus the circle's center 
(C,0) and radius S are given by 

R -  1/R 
- (A3] 

R - 1/R 
S - (A41 

2 

so that 

C: - S: = 1. IA5) 

From Fig. A3. the pole co-ordinates may be expressed in terms of C. S 
and q~, 

t. = C - Scos 2q) (A61 
= S sin 2q). (A7) 

7, 
- . . ~  

\ 

I 
\ 

R 

/ 
/ 

Fig. A1. Mohr circle representing an ellipse of axial ratio R in 2'! 7' 
space. P is the pole which distinguishes this ellipse from others of equal 

axial ratio but different orientation. 
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, ,  

I 
Fig. A2. Transformation of (21 , Yl) pole co-ordinates to (~.~, y[) upon 
imposition of deformation (,~i, 0) according to equations (A1) and 
(A2). Note that the set of poles on a common Mohr circle represent an 
initial shape contour, and that they transform from a circle to an ellipse 

with a vertical to horizontal axial ratio Rs. 

Conversely, given .the pole co-ordinates (2', y ') ,  R and ~ may be 
obtained by simultaneous solution of the pair of equations 

tan ~ = y'/(R - 2') (A8) 
cot ~ = y'/(2' - l /R).  (A9) 

Equation (A1) may be rewritten using equation (A6) in two ways, with 
the strain ellipse long axis as reference direction and an axial ratio of 
Rs, or with the short axis as reference direction and an axial ratio of 
1/Rs. Noting that Rs = 1/2's, 

(Cf - St cos 2¢~f)Rs = Ci - Si cos 2~i (A10) 
(Cf + St cos 2$t)/Rs = Ci + Si cos 2#i. (A l l )  

Adding, and using equations (A3) and (A4) for the strain state, 

CfCs - SfSs cos 2~t -- Ci (A12) 

or  

sec 2¢f = SfSs (A13) 
C42~ - Ci. 

This equation, which is independent of ¢i, is the equation of an initial 
shape contour. If, following Nadai (1950, equations 3--15), we let S 
denote sinh 72 and C denote cosh 72, then equation (A12) is analogous 
to Dunnet's (1969) equation (28). 

Dividing equation (A10) by Rs and multiplying (A l l )  by Rs, then 
adding, yields 

Cf = CiC s + SiS s cos 2¢i (A14) 

which is Elliott's (1970) equation (24), whereas subtracting equation 
(Al l )  from equation (A10) yields 

St cos 2~t = CiS~ + SiC~ cos 2¢i. (A15) 

From equations (A2) and (A7), 

St sin 2 ¢ f  = S i sin 2¢i (A16) 

so dividing equations (A15) by (A16) yields 

cot 2opt = CtiS s cosec 2~i + Cs cot 2~i , (A17) 

where Ct denotes cotanh 72. Equation (A17) is Elliott's (1970) equa- 
tion (23) as typographically corrected by Tob.isch et al. (1977). Equa- 

T' 

Fig. A3. Explanation of equations (A3)-(A7). See text for details. 

tions (A14) and (A17) together describe the trajectories of ellipses in 
terms of initial and strain parameters. 

To obtain an expression for the strain contours, set @, = 45 ° in 
equations (A14) and (A15), 

Cf = CiCs (A18) 
Sf cos 2~pf = CiSs (A19) 

then eliminating Ci yields 

"If = T~ sec 2@f, (A20) 

where T denotes tanh 72. For an isogon with vertex (R=, ¢m), from 
equation (A20), 

Tf =Tm sec2(#f - ~m), (A21) 

where 

Hence 

Tm= Ts cos 2~m. (A22) 

Tf = Ts sec 2(#f - #m) COS 2#m. (A23) 

TO find this isogon's equation in terms of ¢~ and not em, divide 
equation (A12) by equation (A16), 

Cti = ChC~ sin 2~i cosec 2#f - Ss sin 2#i cot 2#f (A24) 

and then use equation (A17) to eliminate Cti, 

Ctf = Cs cos 2~f - sin 2#f cot 2~i. (A25) 

Finally, one may obtain an exact solution for (Rs, #s). Assuming an 
initially uniform distribution, first calculate the average (or median) 
ellipse orientation, #m, as an estimate of es. Then equation (A20) may 
be written in pocket calculator format, 

R, = exp(arctanh (tanh(ln (Rf) x cos 2(¢f - ¢)))), (A26) 

where the bars denote medians of all stored (Rf, Of) data. To test the 
assumption of uniformity, equation (A26) should be solved separately 
for data on either side of Ore. If the population was initially uniform, it 
will be symmetric about ~m after deformation, and the two solutions 
will match. An exact solution is also possible for tectonically imbri- 
cated fabrics by first determining the median value of I"= from equation 
(A21) and then using an independent estimate of em in equation (A22) 
to calculate T, and hence Rs. 




